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(a) homogenization method (M. Bendsoe, M. Kikuchi, A. V. Cherkaev, F. Allaire, J. H.)

(b) free material approach (M. Bendsoe, P. Pedersen, J. E. Taylor)

(i) computational aspects (Ben-Tal, M. Ko¢vara, A. Nemirovski, J. Zowe)

(ii) theoretical aspects

J. Haslinger (Charles University) Free material optimization 2/23



Setting of the problem

fel*(r,RY), Ne{2,3}

T

Find u such that

. dive = 0 in Q
(P(E)) o-n = f on
Uop = 0 on ro

o = E-e(u) inQ

Find u € V such that
P(E
(PE) aE(u,w)z/f~wds Yw eV,
r

where

va >

=] 5 = E §
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V={veH(QR")|v=0o0nTo},
ae(u, W):/<E(X)E(U(X))7E(W(X))> dx,
Q
(E(x)e(u(x)),e(w(x))) == Eipei(u(x))en(w(x)).

Vectorial and the matricial representation of € and E, respectively:

e = (e11,€2, V2e12) | € R? (RN),

Enn  Enz  V2Eum I
E= Exze V2Exn | € RVC RN, N=N(N+1)/2
sym. 2E1212
The set of feasible materials J

So={EeLl®(Q,S") | E>0ae in Q}
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The set of admissible materials J

E={Ec&|Tr(E)<pae inQ, v(E) <V},

where
v(E) = / Tr(E)dx and p,v > 0 are given.
Q

State problem

(P(E)) ug € V: uE:arginf{%ag(u,u)—/f-uds}, Ecé&
ueV r

Minimum compliance single-load FMO problem

(P) { it <(E), c(E):/f-uE o

subject to: ug satisfies (P(E))
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REe(B) = Lo —n(Ew,

where

Nn(E,u) = %ag(u, u) —/rf -uds

Our goal:

to extend the class of cost functionals and to include also control and state constraints.

Theoretical tools

H-convergence (L. Tartar, F. Murat)

Let 0 < a < 3 be given. Define

£P ={E e L™(Q,S") | aly < E< Bly ae.

in Q}

Theorem 1

The set £ is H-compact.
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Let £ > 0 be given. Define
ES={EE€E|E =cly ae. inQ}

Proposition 1
The set £° is H-compact.

Proof.
ECE P fora=c¢, B=p/N. Let E, > E*, E, € £°.
E" €& <=Tr(E")<p ae. inQ
/QTr(E*)dx <v

E, — E weaklyx and E* < E a.e. in Q
Tr(E)<pae inQ, /Tr(E) dx <.
Q
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Cost functionals

J:EExV >R
satisfying
H e
E.—~E EnEcé } = liminf J(En, va) > J(E, v) (1)
Vo —=vVv inV n—o0
The regularized free material optimization problem
Elg; J(E, ug), (P)
where J satisfies (1) and ug € V solves (P(E)).
v
Theorem 2
Problem (P) has a solution.
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Examples of cost functionals satisfying (1)

@ the compliance cost functional
J(E, ug) := c(E)
@ the tracking functional
J(E, ug) := |lue — w030, uo € V given

@ stress functional
J(E, ug) ::/a,:T.MaE dx,
Q

where M is the von Mises matrix and or = E=(ug).

Extension: design dependent functionals

d: 85 >R, P(E)= /ﬂgo(E(x)) dx
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where ¢ : S¥ — R is monotone:

A< B=>p(A) < p(B) ABes" )

Proposition 2

Let ¢ be continuous and satisfy (2). If  is weaklyx lower-semicontinuous, then is also H
lower-semicontinuous.

(C. Barbarosie, S. Lopez)

One can add to £° any constraint of the type
®(E) < C, CER given,

and Theorem 2 still holds.
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Extension: state constraints J

gi(ue) < Cu, gul(oe) < G, Gy, Cr €R given,

where g, g are weakly lower-semicontinuous functionals in V' and L*(Q,R"),
respectively.

Define
eS8 ={E €& | gi(ue) < Cu, guloe) < G} J

Suppose, that £5:881 £ 0.

The set £°-8/8! is H-compact.

Proposition 3 J

Examples of the state constraints

@ linear displacement constraints

/ d(x) - ue(x)dx, d € L2(Q,RY) given
Q
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@ tracking type displacement constraints
lue — U0||<2),Q <C, uw €V given

@ integral stress constraints
/ JE(X) - Moe(x)dx < C,
w
where w C Q, M = unit or von Mises matrix.

State constrained FMO problem

£ciBlygy (> ) .
v

Theorem 3

Problem (P)g, ¢, has a solution.
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Discretization of (P) and (), g,

Two level approach
1% level:  discretization of £° and £%-&/-81

2" level:  full discretization

Discretization of the design set

{S.}, k=0, ... system of partitions of Q:

a-{Ja
i=1

maxdiam Q; < K
1

Ei i= Eln, € (Po(@))"™", E = el Tr(E) < Vi, Y Tr(E)lul < v}

i=1

52:{Ee£€
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g:,gl,gu = EEvglygll n EZ J

1%t level approximation of (P) and (PP), g,
g A5 71 (P)

and
J(E"‘iv U), (]P));/ 811

inf
£,8/
E. Eg’i &1:8]]

respectively, where u € V solves (P(E.)).
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Convergence analysis for (P)", k — 04

Proposition 3

The system {€5}, kK — 04 is dense in £°: for any E € £&° I{E.}, E. € &; such that

E.— E in (L°(Q2)"N vp € [1,00) 3)
Proof.
E.| L / E(x) dx
k|Q = T~ T
2] Jo,
DJ
Corollary
Let {E.} satisfy (3). Then
ug = ug, —ug inV,k— 04

In addition to (1) suppose that

E. — E in (L3(Q))VV . B

oy i Vok0, [ Jim- J(Ex,vi) = J(E, V) (4)
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Theorem 4

Let J satisfy (1) and (4). Then from any sequence of optimal pairs {(Ez, us)} of (P)”
one can find a subsequence {(E; , uy;)} such that

* H *

G } (5)

Ug, = u” inV, j—o00
and (E*,u™) is an optimal pair of (). Any accumulation point of {(E:, u%)} in the
sense of (5) possesses this property.

v

2" level: the full discretization
K > 0 fixed
{Vh}, h— 04 ... a system of finite dimensional subspaces of V with the following

density property:

VveV FHw}, e Vh: wvi—v inV, h— 04
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The Galerkin approximation of (P(E.)), E. € &

Find up € V}, such that

ac,. (un, vn) = /f'Vh ds Yy € Vi (P(Ex))n

r

2" level of the approximation of (P)"~
inf  J(Eg, up) ®)5

Ex€E

&
K

where uy € V, solves ((P(Ex))n)-

Theorem 5

Let J satisfy (4). Then from any sequence {(E},, u;)} of optimal pairs of (P);, h — 04
one can find a subsequence {(E, uj )} such that
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El — Er €& in (Lo(Q)VN
y (L=(2) } ®)

u,’;j—>u,’2 inV, j— o0

and (E;, uy) is an optimal pair of (P)®. Any accumulation point of {(E;, u;)} in the
sense of (6) possesses this property.

Remark

One can find a filter of indices such that

H -
Eny 2 E, j—oo

where E™ solves (P).
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The constrained case (g/(ug) <0, gi(og) <0)

penalty approach —— unconstrained case.

A penalty functional j : R — R satisfying:

JECR), j(t)=0Vt<0, t<t=j(t)<j(t)

Problem (P)g, g, is replaced by

(P)VJ

min J7(E, ug),
Ee&e
where 1
J(E, ue) := J(E, ue) + — (i(&1(ue)) +(au(oe)). 7 \0s
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Proposition 4
Problem (P)” has a solution for any v > 0.

Theorem 6
Let {(E, u7)} be a sequence of optimal pairs of ()%, ~; "\, 0. Then one can find a
subsequence {(Ej, u7, )} such that

K7

% H * £,8],
Ejk_’E c 58181 } (7)

ui =u" inV, k—oo

Moreover, (E*, u™) is an optimal pair of (P)g, g,. Any accumulation point of {(E/, u)}
in the sense of (7) possesses this property.

J. Haslinger (Charles University) Free material optimization 20/ 23



Example

e=10"" v=0333)Q, 5=1
cost functional = compliance

Q = L-shaped structure
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Example

No state constraints

w

i

i
i

(a) material density

(b) principal material orientation (c) stress distribution

Jopt = 2.007
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Example

State constraints

RN

(d) material density (e) principal material orientation () stress distribution

(g) stress disribution - active set

Jopt == 2425

J. Haslinger (Charles University) Free material optimization

23 /23



	�

