

Streamlining the Applied Mathematics Studies at Faculty of Science of Palacký University in Olomouc CZ.1.07/2.2.00/15.0243

INVESTMENTS
IN EDUCATION
DEVELOPMENT

International Conference Olomoucian Days of Applied Mathematics

ODAM 2011

Department of Mathematical analysis and Applications of Mathematics

Faculty of Science Palacký University Olomouc

Free material optimization

J. Haslinger ¹

jointly with M. Kočvara², G. Leugering³, M. Stingl³

¹Charles University, Prague

²University of Birmingham

³University of Erlangen

- (a) homogenization method (M. Bendsoe, M. Kikuchi, A. V. Cherkaev, F. Allaire, J. H.)
- (b) free material approach (M. Bendsoe, P. Pedersen, J. E. Taylor)
 - (i) computational aspects (Ben-Tal, M. Kočvara, A. Nemirovski, J. Zowe)
 - (ii) theoretical aspects

Setting of the problem

$$f \in L^2(\Gamma, \mathbb{R}^N), N \in \{2, 3\}$$

$$(\widetilde{\mathcal{P}}(E)) \quad \begin{cases} \mathsf{Find} \ u \ \mathsf{such} \ \mathsf{that} \\ \mathsf{div} \ \sigma \ = \ 0 & \mathsf{in} \ \Omega \\ \sigma \cdot n \ = \ f & \mathsf{on} \ \Gamma \\ u_0 \ = \ 0 & \mathsf{on} \ \Gamma_0 \\ \sigma \ = \ E \cdot \varepsilon(u) & \mathsf{in} \ \Omega \end{cases}$$

$$(\widetilde{\mathcal{P}}(E)) \quad \left\{ egin{array}{ll} \mathsf{Find} \ u \in V \ \mathsf{such that} \ \\ a_E(u,w) = \int_\Gamma f \cdot w \ ds \quad orall w \in V, \end{array}
ight.$$

where

$$V = \{v \in H^1(\Omega, \mathbb{R}^N) \mid v = 0 \text{ on } \Gamma_0\},$$

$$a_{E}(u, w) = \int_{\Omega} \langle E(x)\varepsilon(u(x)), \varepsilon(w(x))\rangle dx,$$

$$\langle E(x)\varepsilon(u(x)),\varepsilon(w(x))\rangle := E_{ijkl}\varepsilon_{ij}(u(x))\varepsilon_{kl}(w(x)).$$

Vectorial and the matricial representation of ε and E, respectively:

$$\varepsilon = (\varepsilon_{11}, \varepsilon_{22}, \sqrt{2}\varepsilon_{12})^T \in \mathbb{R}^3 \quad (\mathbb{R}^{\bar{N}}),$$

$$E = \begin{pmatrix} E_{1111} & E_{1122} & \sqrt{2}E_{1112} \\ & E_{2222} & \sqrt{2}E_{2212} \\ \text{sym.} & 2E_{1212} \end{pmatrix} \in \mathbb{R}^{3\times3} \left(\mathbb{R}^{\bar{N}\times\bar{N}} \right), \ \bar{N} = N(N+1)/2$$

The set of feasible materials

$$\mathcal{E}_0 = \{ E \in L^{\infty}(\Omega, \mathbb{S}^{\bar{N}}) \mid E \succcurlyeq 0 \text{ a.e. in } \Omega \}$$

The set of admissible materials

$$\mathcal{E} = \{ E \in \mathcal{E}_0 \mid \mathsf{Tr}(E) \leq \bar{\rho} \text{ a.e. in } \Omega, \, \textit{v}(E) \leq \bar{\textit{v}} \},$$

where

$$v(E) = \int_{\Omega} \operatorname{Tr}(E) dx$$
 and $\bar{\rho}, \bar{v} > 0$ are given.

State problem

$$(\mathcal{P}(E)) \qquad \textit{$u_E \in V:$} \quad \textit{$u_E = \underset{\textit{$u \in V$}}{\text{arg inf}} \left\{ \frac{1}{2} \textit{$a_E(u,u) - \int_{\Gamma} \textit{$f \cdot u$ ds} \right\}, \quad \textit{$E \in \mathcal{E}$}$$

Minimum compliance single-load FMO problem

$$(\mathbb{P}) \qquad \left\{ \begin{array}{c} \inf_{E \in \mathcal{E}} c(E), \\ \text{subject to: } u_E \text{ satisfies } (\mathcal{P}(E)) \end{array} \right. \quad c(E) = \int_{\Gamma} f \cdot u_E \, ds$$

$$\inf_{E \in \mathcal{E}} c(E) = \inf_{E \in \mathcal{E}} \sup_{u \in V} -\Pi(E, u),$$

where

$$\Pi(E, u) = \frac{1}{2} a_E(u, u) - \int_{\Gamma} f \cdot u \, ds$$

Our goal:

to extend the class of cost functionals and to include also control and state constraints.

Theoretical tools

H-convergence (L. Tartar, F. Murat)

Let $0 < \alpha < \beta$ be given. Define

$$\mathcal{E}^{\alpha,\beta} = \{ E \in L^{\infty}(\Omega, \mathbb{S}^{\bar{N}}) \mid \alpha I_{\bar{N}} \preccurlyeq E \preccurlyeq \beta I_{\bar{N}} \text{ a.e. in } \Omega \}$$

Theorem 1

The set $\mathcal{E}^{\alpha,\beta}$ is H-compact.

Let $\varepsilon > 0$ be given. Define

$$\mathcal{E}^{\varepsilon} = \{ E \in \mathcal{E} \mid E \succcurlyeq \varepsilon \textit{I}_{\bar{N}} \text{ a.e. in } \Omega \}$$

Proposition 1

The set $\mathcal{E}^{\varepsilon}$ is H-compact.

Proof.

$$\mathcal{E}^{\varepsilon} \subset \mathcal{E}^{\alpha,\beta}$$
 for $\alpha = \varepsilon$, $\beta = \bar{\rho}/\bar{N}$. Let $E_n \stackrel{\mathsf{H}}{\longrightarrow} E^*$, $E_n \in \mathcal{E}^{\varepsilon}$.
$$E^* \in \mathcal{E}^{\varepsilon} \Longleftrightarrow \mathsf{Tr}(E^*) \leq \bar{\rho} \ \text{a.e. in } \Omega$$
$$\int_{\Omega} \mathsf{Tr}(E^*) \, dx \leq \bar{v}$$

 $E_n
ightharpoonup ar{\mathcal{E}}$ weakly* and $E^* \preccurlyeq ar{\mathcal{E}}$ a.e. in Ω ${\sf Tr}(ar{\mathcal{E}}) \leq ar{
ho}$ a.e. in $\Omega, \ \int_{\Omega} {\sf Tr}(ar{\mathcal{E}}) \, dx \leq ar{v}.$

イロト イ御 ト イミト イミト 一意

Cost functionals

$$J: \mathcal{E}^{\varepsilon} \times V \to \mathbb{R}$$

satisfying

$$\left. \begin{array}{l} E_n \stackrel{\text{H}}{\to} E, \ E_n, E \in \mathcal{E}^{\varepsilon} \\ v_n \rightharpoonup v \ \text{in } V \end{array} \right\} \Longrightarrow \liminf_{n \to \infty} J(E_n, v_n) \ge J(E, v) \tag{1}$$

The regularized free material optimization problem

$$\inf_{E\in\mathcal{E}^{\varepsilon}}J(E,u_{E}),\tag{P}$$

where J satisfies (1) and $u_E \in V$ solves $(\mathcal{P}(E))$.

Theorem 2

Problem (\mathbb{P}) has a solution.

Examples of cost functionals satisfying (1)

• the compliance cost functional

$$J(E, u_E) := c(E)$$

• the tracking functional

$$J(E, u_E) := \|u_E - u_0\|_{0,\Omega}^2, \quad u_0 \in V \text{ given}$$

stress functional

$$J(E,u_E):=\int_{\Omega}\sigma_E^T\cdot M\sigma_E\,dx,$$

where M is the von Mises matrix and $\sigma_E = E\varepsilon(u_E)$.

Extension: design dependent functionals

$$\Phi: \mathcal{E}^{\varepsilon} \to \mathbb{R}, \quad \Phi(E) = \int_{\Omega} \varphi(E(x)) dx$$

where $\varphi:\mathbb{S}^{\bar{N}} \to \mathbb{R}$ is monotone:

$$A \preccurlyeq B \Longrightarrow \varphi(A) \le \varphi(B) \quad A, B \in \mathbb{S}^{\bar{N}}$$
 (2)

Proposition 2

Let φ be continuous and satisfy (2). If Φ is weakly* lower-semicontinuous, then is also H lower-semicontinuous.

(C. Barbarosie, S. Lopez)

One can add to $\mathcal{E}^{arepsilon}$ any constraint of the type

$$\Phi(E) \leq C, \quad C \in \mathbb{R}$$
 given,

and Theorem 2 still holds.

Extension: state constraints

$$g_I(u_E) \leq C_u, \quad g_{II}(\sigma_E) \leq C_\sigma, \quad C_u, C_\sigma \in \mathbb{R} \ \ \text{given},$$

where g_I, g_{II} are weakly lower-semicontinuous functionals in V and $L^2(\Omega, \mathbb{R}^{\bar{N}})$, respectively.

Define

$$\mathcal{E}^{\varepsilon,g_I,g_{II}} = \{E \in \mathcal{E}^\varepsilon \mid g_I(u_E) \leq C_u, \ g_{II}(\sigma_E) \leq C_\sigma\}$$

Suppose, that $\mathcal{E}^{\varepsilon,g_I,g_{II}} \neq \emptyset$.

Proposition 3

The set $\mathcal{E}^{\varepsilon,g_I,g_{II}}$ is H-compact.

Examples of the state constraints

linear displacement constraints

$$\int_{\Omega} d(x) \cdot u_E(x) dx, \quad d \in L^2(\Omega, \mathbb{R}^{\bar{N}})$$
 given

tracking type displacement constraints

$$\left\| \textit{u}_{\textit{E}} - \textit{u}_{0}
ight\|_{0,\Omega}^{2} \leq \textit{C}, \quad \textit{u}_{0} \in \textit{V} \; \; \text{given}$$

integral stress constraints

$$\int_{\omega} \sigma_{E}^{T}(x) \cdot M \sigma_{E}(x) \, dx \leq C,$$

where $\omega \subset \Omega$, M = unit or von Mises matrix.

State constrained FMO problem

$$\inf_{E\in\mathcal{E}^{\varepsilon,g_I,g_{II}}}J(E,u_E)$$

 $(\mathbb{P})_{g_I,g_I}$

Theorem 3

Problem $(\mathbb{P})_{g_I,g_{II}}$ has a solution.

Discretization of (\mathbb{P}) and $(\mathbb{P})_{g_I,g_{II}}$

Two level approach

 1^{st} level: discretization of $\mathcal{E}^{\varepsilon}$ and $\mathcal{E}^{\varepsilon,g_I,g_{II}}$

2nd level: full discretization

Discretization of the design set

 $\{S_{\kappa}\}, \ \kappa \to 0_+ \quad \dots \quad \text{system of partitions of } \bar{\Omega}$:

$$\bar{\Omega} = \bigcup_{i=1}^m \Omega_i$$

 $\max_i \operatorname{diam} \Omega_i \leq \kappa$

$$\mathcal{E}^{\varepsilon}_{\kappa} = \left\{ E \in \mathcal{E}^{\varepsilon} \middle| E_{i} := E|_{\Omega_{i}} \in \left(P_{0}(\Omega_{i})\right)^{\bar{N} \times \bar{N}}, \; E_{i} \succcurlyeq \varepsilon I_{\bar{N}}, \; \mathsf{Tr}\left(E_{i}\right) \leq \bar{\rho} \; \forall i, \; \sum_{i=1}^{m} \mathsf{Tr}\left(E_{i}\right) |\Omega_{i}| \leq \bar{v} \right\}$$

$$\mathcal{E}_{\kappa}^{\varepsilon,\mathrm{g}_{\mathrm{I}},\mathrm{g}_{\mathrm{II}}}=\mathcal{E}^{\varepsilon,\mathrm{g}_{\mathrm{I}},\mathrm{g}_{\mathrm{II}}}\cap\mathcal{E}_{\kappa}^{\varepsilon}$$

1^{st} level approximation of (\mathbb{P}) and $(\mathbb{P})_{g_l,g_{ll}}$

$$\inf_{E_{\kappa} \in \mathcal{E}_{\kappa}^{\varepsilon}} J(E_{\kappa}, u) \tag{P}^{\kappa}$$

and

$$\inf_{E_{\kappa} \in \mathcal{E}_{\kappa}^{\varepsilon, g_{I}, g_{II}}} J(E_{\kappa}, u), \tag{P}_{g_{I}, g_{II}}^{\kappa}$$

respectively, where $u \in V$ solves $(\mathcal{P}(E_{\kappa}))$.

Convergence analysis for $(\mathbb{P})^{\kappa}$, $\kappa \to 0_+$

Proposition 3

The system $\{\mathcal{E}_{\kappa}^{\varepsilon}\},\ \kappa \to 0_{+}$ is dense in $\mathcal{E}^{\varepsilon}$: for any $E \in \mathcal{E}^{\varepsilon}$ $\exists \{E_{\kappa}\},\ E_{\kappa} \in \mathcal{E}_{\kappa}^{\varepsilon}$ such that

$$E_{\kappa} \to E \quad \text{in } (L^{p}(\Omega))^{\bar{N} \times \bar{N}} \ \forall p \in [1, \infty)$$
 (3)

Proof.

$$E_{\kappa}|_{\Omega_i} = \frac{1}{|\Omega_i|} \int_{\Omega_i} E(x) dx$$

Corollary

Let $\{E_{\kappa}\}$ satisfy (3). Then

$$u_{\kappa}:=u_{E_{\kappa}} \to u_{E} \quad \text{in } V, \ \kappa \to 0_{+}$$

In addition to (1) suppose that

$$\left. \begin{array}{ll}
E_{\kappa} \to E & \text{in } (L^{2}(\Omega))^{\bar{N} \times \bar{N}} \\
v_{\kappa} \to v & \text{in } V, \ \kappa \to 0_{+}
\end{array} \right\} \Longrightarrow \lim_{\kappa \to 0_{+}} J(E_{\kappa}, v_{\kappa}) = J(E, v) \tag{4}$$

Theorem 4

Let J satisfy (1) and (4). Then from any sequence of optimal pairs $\{(E_{\kappa}^*, u_{\kappa}^*)\}$ of $(\mathbb{P})^{\kappa}$ one can find a subsequence $\{(E_{\kappa_i}^*, u_{\kappa_i}^*)\}$ such that

$$\begin{bmatrix}
E_{\kappa_j}^* \xrightarrow{\mathsf{H}} E^* \\
u_{\kappa_j}^* \xrightarrow{} u^* & \text{in } V, j \to \infty
\end{bmatrix}$$
(5)

and (E^*, u^*) is an optimal pair of (\mathbb{P}) . Any accumulation point of $\{(E_{\kappa}^*, u_{\kappa}^*)\}$ in the sense of (5) possesses this property.

2nd level: the full discretization

 $\kappa > 0$ fixed

 $\{V_h\},\ h \to 0_+$... a system of finite dimensional subspaces of V with the following density property:

$$\forall v \in V \quad \exists \{v_h\}, \ v_h \in V_h: \quad v_h \to v \quad \text{in } V, \ h \to 0_+$$

The Galerkin approximation of $(\mathcal{P}(E_{\kappa}))$, $E_{\kappa} \in \mathcal{E}_{\kappa}^{\varepsilon}$

Find
$$u_h \in V_h$$
 such that
$$a_{E_\kappa}(u_h, v_h) = \int_\Gamma f \cdot v_h \, ds \quad \forall v_h \in V_h$$
 $\left\{ \mathcal{P}(E_\kappa) \right\}_h$

2^{nd} level of the approximation of $(\mathbb{P})^{\kappa}$

$$\inf_{E_{\kappa} \in \mathcal{E}_{\kappa}^{\varepsilon}} J(E_{\kappa}, u_{h}) \tag{P}_{h}^{\kappa}$$

where $u_h \in V_h$ solves $((\mathcal{P}(E_\kappa))_h)$.

Theorem 5

Let J satisfy (4). Then from any sequence $\{(E_{\kappa h}^*, u_h^*)\}$ of optimal pairs of $(\mathbb{P})_h^{\kappa}$, $h \to 0_+$ one can find a subsequence $\{(E_{\kappa h_i}^*, u_{h_i}^*)\}$ such that

and $(E_{\kappa}^*, u_{\kappa}^*)$ is an optimal pair of $(\mathbb{P})^{\kappa}$. Any accumulation point of $\{(E_{\kappa h}^*, u_h^*)\}$ in the sense of (6) possesses this property.

Remark

One can find a filter of indices such that

$$E_{\kappa_j h_j}^* \stackrel{\mathsf{H}}{\longrightarrow} E^*, \quad j \to \infty$$

where E^* solves (\mathbb{P}) .

The constrained case $(g_I(u_E) \le 0, g_{II}(\sigma_E) \le 0)$

penalty approach --- unconstrained case.

A penalty functional $j : \mathbb{R} \to \mathbb{R}$ satisfying:

$$j \in C(\mathbb{R}), \quad j(t) = 0 \ \forall t \leq 0, \quad t_1 \leq t_2 \Rightarrow j(t_1) \leq j(t_2)$$

Problem $(\mathbb{P})_{g_I,g_{II}}$ is replaced by

$$\min_{E \in \mathcal{E}^{\varepsilon}} J^{\gamma}(E, u_E), \tag{P}^{\gamma}$$

where

$$J^{\gamma}(E,u_{E}):=J(E,u_{E})+\frac{1}{\gamma}\big(j(g_{I}(u_{E}))+j(g_{II}(\sigma_{E}))\big),\quad \gamma\searrow 0_{+}$$

Proposition 4

Problem $(\mathbb{P})^{\gamma}$ has a solution for any $\gamma > 0$.

Theorem 6

Let $\{(E_j^*, u_j^*)\}$ be a sequence of optimal pairs of $(\mathbb{P})^{\gamma_j}$, $\gamma_j \searrow 0_+$. Then one can find a subsequence $\{(E_{i_*}^*, u_{i_*}^*)\}$ such that

$$\left. \begin{array}{c} E_{j_k}^* \stackrel{\mathsf{H}}{\to} E^* \in \mathcal{E}^{\varepsilon, g_{J}, g_{II}} \\ u_{j_k}^* \rightharpoonup u^* & \text{in } V, \ k \to \infty \end{array} \right\} \tag{7}$$

Moreover, (E^*, u^*) is an optimal pair of $(\mathbb{P})_{g_l,g_{ll}}$. Any accumulation point of $\{(E_j^*, u_j^*)\}$ in the sense of (7) possesses this property.

Example

$$\begin{split} \varepsilon &= 10^{-4}, \quad \bar{v} = 0.333 |\Omega|, \quad \bar{\rho} = 1 \\ &\text{cost functional} = \text{compliance} \\ &\Omega = \text{L-shaped structure} \end{split}$$

Figure: Geometry and forces.

Example

No state constraints

 $J_{opt} = 2.007$

Example

State constraints

 $(\mathsf{f}) \ \mathsf{stress} \ \mathsf{distribution}$

(g) stress disribution - active set

 $J_{opt} = 2.425$